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A NEW APPROACH TO COSMIC RAY DIFFUSION THEORY

We have investigated a new approach to deriving
a diffusion equation for charged particles in a
static, random magnetic field. Our approach
differs from the usual, quasi-linear one, in that
we replace particle orbits in the average field
by particle orbits in a partially averaged
field. In this way the fluctuating component
of the field significantly modifies the particle
orbits in those cases where the orbits in the
average field are unrealistic. This method
allows us to calculate a finite value for the
pitch angle diffusion coefficient for particles
with a pitch angle of 90 rather than the
divergent or ambiguous results obtained by
quasi-linear theories. Results of this new
approach are compared with results of computer
simulations using Monte Carlo techniques.

We propose a new scheme for deriving a kinetic equation

for the one particle cosmic ray distribution function <f>

averaged over an ensemble of static, random magnetic fields B

The essence of our new method is that the zeroth order partic

orbits partially contain the effects of the fluctuating mag-

netic component 6B. The result of our theory is that <f>

satisfies a diffusion equation in p=cos 0, where 8 is the

particle pitch angle measured with respect to the average

field <B>. So long as p is not too small, the diffusion co-

efficient D(P) is the same as that derived from quasi-linear

theories 1 - 5 . When p o (8 = 7/2), a regime in which consid

erable controversy has existed 5 '6 , we obtain a D which is

finite and markedly different from previous incorrect result

The reason for this difference near 08 = /2 is that our thec
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adequately describes the motion of such particles over a

coherence time of the fluctuations, while quasi-linear theory

follows the motion of particles as if <B> only existed and

is hence a very poor approximation to their actual motion.

The correctness of our theory is substantiated by comparison

with the results of a Monte Carlo analysis.

For computational simplicity we consider the slab model4

A A
in which B = e <B> + e 6B(z), <B> being spatially homogen-

ous and 6B depending only on the single spatial variable z.

The method can be generalized to more complex geometries.

The theory begins from the continuity equation for F,

the cosmic ray distribution function in the phase space whose

dimensions are z, a, speed v, and gyrophase 4. It proceeds

by a formalism analogous to Weinstock's7 plasma turbulence
2T

theory to a diffusion equation for <f> = (2f) lfd%<F>. The
0

assumptions made in the derivation are a) 6F(t=o) E o,

b) <F>has only a weak ¢-dependence and c) <f> has a slow

phase space evolution so that the usual adiabatic approxima-

tion is valid. The diffusion coefficient D(p,t) is given by

q 27r t 1/2
D(jsn < zt)= (1-P 2 ) 1/2 dosing c <6B(z)U(t,T)(l-p)

o o (1)

sin46B(z)>

The operator U operates on everything to its right. In

its exact form7, U is UA, a complicated non-linear operator
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which has no physical interpretation nor algorithm for con-

structing it.

Quasi-linear theory approximates UA by Uo, a propagator

which propagates particles along helical trajectories in the

field <B>. 86=/2 particles thus execute nearly circular

orbits and remain in a correlated region of field for arbi-

trarily long times. Hence the true orbits are incorrectly

described to an arbitrarily large degree.

In our theory we approximate UA by Up, a propagator

which propagates along trajectories in a partially averaged

magnetic field. The partial averaging is over a subset of

realizations of the full ensemble, the subset being all those

realizations which have a given value of 6B(z) at the field

point z. We assume that 6B is a Gaussian process so that Up

propagates along particle trajectories in the partially

averaged field Bp (z',z)= z<B> + ex6B(z)C(z-z'). Here C is

the normalized correlation function for the fluctuations.

Addition of effects of the partially averaged field

removes 8O=/2 particles from the correlation region in a time

short enough that deviations from their true trajectories are

not catastrophic. Further, our method of partial averaging

accounts for the effects of the fluctuations most accurately

at the spatial point where they are most important, viz. at z.
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We have thus far considered the guiding center limit,

where 6B(z)rg/<B>zc<<l,rg being the particle gyro-radius in

B and z the correlation length of the fluctuations. In this
p c

limit the z-motion of the guiding center is that of a particle

on a potential hill of height v [6B(z)/<B>]2 . So long as the

guiding center has any (even infinitesimal) speed at z=z', it

moves a distance z c in a finite time interval of order

<B>zc/6B(z)v in magnitude. The particle motion in Bp is

reasonably described by the approximate form

z(T)= z+v(p 2 +a6B 2 (z)/<B>2 )1 /2(t-T)Ez+v(t-T)G(p,B) (2)

with a a numerical constant of order unity.

The orbit given by Eq. (2) is used in evaluating Eq. (1).

We further assume a) the effect of 6B in propagating p and 4

can be neglected and b) a spatially homogeneous ensemble. The

diffusion coefficient which we obtain

2 2 2 2-1 2 +co
D(,t)=q(1-2) (4m2 c 2)-l<6B(z) dkP(k)sin[(<w>+kvG)t]

-co
(<w>+kvG) - > (3)

is exactly of the form of Jokipii's diffusion coefficient but

with G appearing in place of simply p. (Here P(k) is the power

spectrum corresponding to C and <w> is the gyro-frequency

q<B>/mc.) D(p,t) consists of a transient term which decays

with the characteristic time zc/v<G> and is thus negligible

after at most a few deflection times in the rms fluctuating

field plus a resonant time independent term. Because of the

presence of G rather than p in Eq. (3) the resonance is broad-
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ened in a fashion similar to that found in the theory of

strong plasma turbulence8

For an exponential correlation function, the resonant

contribution is

1-[Iicor2<B>(<w 2 2 -1>2 2 221/2D(p,-)=(21a)-l/2[2<B>(<2>Zc2+I2v2)] -P2(l-1-2)<w2>vz <6B2>1/2

exp 2 2  K 1 2(4)exp (<B>2 2 ) <>22

4<6B >a 4<6B2>a

where K1 is the modified Bessel function. When

<B>2 2/4<6B2 >a>>l, Eq. 4 approaches the quasi-linear result.

In the opposite extreme, however, we differ markedly from

quasi-linear diffusion theory: D(O,®) = O in quasi-linear

theory; we find D(O,-) = (2a)l/2v6B2>3/2 l/2 z - Z <B>3 Our

theory allows free diffusion through 900 pitch angles.

In the Monte Carlo analysis we integrate on a computer

Newton's equations of motion for a single particle in 200

A A
realizations of the random field B = <B>e + 6B(z)ex. In each

Z x

realization the particle starts at t=o with random phase 4

but at the same z=zo and with the same p=1o' The statistics

of 6B are Gaussian with an exponential correlation function.

Absorbing boundaries are placed at p1<o and p2>O. The prob-
+00

ability distribution <f>(p,ti ) =_idz<f>(z,p,ti ) is examined

stroboscopically at regular intervals ti . We also follow the

time development of the time summed function

<f> (,ti ) = <E f (,tj)
j=O
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<f> is identified as the distribution function corres-

ponding to steady (in time) injection at zo, .Po This identi-

fication is based on the fact that <f> corresponds to impul-

sive injection and thus is the Green's function corresponding

to arbitrary injection.

Because of the absorbing boundaries there ultimately re-

sults a steady state in which there are constant fluxes j

and jr away from po and toward p1 and p2 respectively. Our

computation routine evaluates jR and jr as well as <f> 's(,).

Since
j =-D(p,) <f>s(H,/)/aP (5)

we are thus able to evaluate D from the Monte Carlo method.

The histogram in Figure 1 shows <> s(p,-) for a simulation

with the typical values po=0.2,p1 =-0.2, and p2 =0.6. The sta-

tistical fluctuations in <f>s result from using a finite

ensemble. Note that particles move freely through p=o. The

curves result from integrating Eq. 5 using the known values

of Jr and jR and D as given by our theory, Eq. 4 with a=l.

The boundary conditions used here are that <f> =o a mean

9free path in p outside the absorbing walls9

Figure 2 shows plots of D(,-)z c/v. The solid curve is

again obtained from Eq. 4 with a=l. A smaller <6B2>1/2/<B>

would result in a larger (in p) region of agreement between

our theory and quasi-linear theory. Shown also are values of
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D(p,o) obtained from the computer work and Eq. 5, using the

known j's and measured values of the slope 3<f>s (P,)/aP.

Error diamonds reflect our estimate of the uncertainties in

these "experimental" quantities.

The agreement between theory and numerical simulation

shown in Figures (1) and (2) clearly illustrates our conclu-

sion. For small i, quasi-linear theory is grossly inadequate.

One must develop a theory which adequately describes the

physics of cosmic rays in all p-regimes. The theory which

we propose evidently does so.
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FIGURE CAPTIONS

Figure 1. Histogram of <f> s(p,) for jo=0.2,p1=-0.2, and

12=0.6 produced by computer "experiment". Smooth

curves result fror. integrating Eq. 5 with D given

by Eq. 4 and jr and jA taken from "experiment".

Figure 2. Pitch angle diffusion coefficient D(p,-) computed

from Eq. 4 as compared with that given by quasi-

linear theory. "Data" points are obtained from

the computer simulation of <f> s(p,) shown in

Figure 1 by means of Eq. 5.
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